(i)	Printed Pages: 4		Roll No.					
(ii)	Questions	:9	Sub.	Code:	3	7	0	9
			Exam.	Code ·	0	4	7	3

M.Sc. Physics 2nd Semester (2042)

MATHEMATICAL PHYSICS-II

Paper: PHY-8021

Time Allowed: Three Hours] [Maximum Marks: 60

Note:—Attempt FIVE questions in all, including Question No. 9 (Unit V) which is compulsory and selecting ONE question each from Unit I-IV.

UNIT-I

- 1. (a) Define the following with examples:
 - (i) Isomorphism and homomorphism
 - (ii) Character of a representation
 - (iii) Lie group.

6

- (b) Show that character is a function of classes just as representation is a function of group elements.
- (a) Discuss symmetry group of a square and show that these form a group of order 8.
 - (b) What are 3-D rotation groups? Discuss commutators and structure constants of SO(3) group. What is its significance?

UNIT—II

3. (a) Find Fourier series expansion for a square wave such that $f(x + 2m\pi) = f(x)$ defined by

$$f(x) = \begin{cases} -h & -\pi < x < 0 \\ h & 0 < x < \pi \end{cases}$$

And hence taking $x = \omega t$, show that

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}.$$

(b) Show that if $\phi(p)$ is the Fourier transform $\psi(x)$ then

$$<\hat{p}> = \int_{-\infty}^{\infty} \psi^*(x) \frac{\hbar}{i} \frac{d}{dx} \psi(x) dx.$$

- 4. (a) Explain Gibbs phenomenon with example. 6
 - (b) Solve the problem of a damped 1D oscillator $\psi''(t) + 2\psi'(t) + 5\psi(t) = 0 \text{ with } \psi(0) = 2$ and $\psi'(0) = -4$ using Laplace transforms.

UNIT-III

- 5. (a) Determine direct product of three tensors A' and B' and C'm and prove that it is a tensor.
 - (b) Solve the equation $\phi(x) = \lambda \int_{0}^{2\pi} \cos(x-t)\phi(t) dt$ for its Eigen values and Eigen functions.

- 6. (a) Explain inner product of two tensors. Illustrate it with an example.
 - (b) Develop an integral equation corresponding to the differential equation

$$y''(x) - y(x) = 0$$
. Given $y(1) = 1$, $y(-1) = 1$.

UNIT-IV

- 7. (a) Explain Binomial, Poisson and Normal distributions.
 State central limit theorem.
 - (b) Describe Simpson and Weddle rules of Numerical Integration.
- 8. (a) Discuss about utility of random numbers and Monte-Carlo technique.
 - (b) The position of particle was found to vary with time as following:

t(in sec)	3.0	3.5	4.0	4.5	5.0
X(t) (in m)	19.354	23.640	28.127	32.734	37.549

Find its speed at t = 4 sec using numerical differentiation with error h^4 .

UNIT-V

- 9. (a) Define n-fold symmetry axis.
 - (b) If $L\{f(t)\}=g(s)$ then show that $L\{e^{at} f(t)\}=g(s-a)$.
 - (c) What are invariant tensors? Give examples.

- (d) Differentiate between Fredholm integral equation and Volterra integral equation.
- (e) What do you mean by simulation?
- (f) Write the covariant derivation of A_t^{rs} . $6\times2=12$