(i)	Pı	rinted Pages: 3	Roll No	
(ii)	Q	uestions : 9	Sub. Code: 3 7	10
		Ex	am. Code: 0 4	7 3
			s 2 nd Semester	
		STATISTICAL	MECHANICS	
		Paper-P	HY-8022	
Tir	ne A	llowed: Three Hours]	[Maximum Mar	ks : 80
No	te :-		ons in all, including Quantum is compulsory by selection it—I to Unit—IV.	
		UN	T-I	
I.	(a)	State and prove Virial	and Equipartition theore	m. 8
	(b)	Discuss classical ideal	gas in Micro Canonical En ynamics.	semble
II.	(a)	Define ensemble and	discuss its various types.	4
	(b)	What is Gibb's Parade Sackur-tetrode equation	ox, hence derive express	ion for
	74	UNI	Γ–II	
III.	(a)	Derive expression for probability for G.C.E. and grand partition function and hence describe thermodynamics of Grand Canonical Ensemble (G.C.E.)		
	(b)		antum mechanical ensen	ables.

8

- IV. (a) Define Quantum states and phase space. Derive expression for statistics of occupation numbers.
 - (b) Show that expression

$$S = \frac{U - A}{T} = KT \left(\frac{\partial q}{\partial t} \right)_{z,y} - KN \ln Z + Kq$$

for entropy of a system in a grand canonical ensemble

can also be written as
$$S = K \left[\frac{\partial}{\partial T} (Tq) \right]_{u,v}$$
.

UNIT-III

V. (a) Discuss the thermodynamics of Bose ideal gas in detail and discuss phenomena of Bose-Einstein condensation.

12

- (b) Draw variation of fugacity (z) of an ideal Bose gas as a function of (V/λ^3) .
- VI. (a) Derive the grand partition function of Photon gas. 8
 - (b) Discuss Pauli paramagnetism in an ideal fermi gas.

8

UNIT-IV

- VII. (a) Define phase transitions and explain Ising and Heisenberg models.
 - (b) Describe the Einstein-Smoulichowski theory of Brownian motion and hence show that any conclusion drawn from Smoulichowski approach are the same as the ones drawn from Einstein approach.
 8

- VIII. (a) Derive the relationship between density fluctuations and spatial correlations in any fluid system.
 - (b) Derive Fokker-Plank equation and hence derive expression of diffusion equation.

UNIT-V

- IX. (a) Define phase space.
 - (b) What is intensive and extensive property?
 - (c) Define q-potential and fugacity (z).
 - (d) Define ensemble and its types.
 - (e) Define partition function.
 - (f) Define Liouville's theorem.
 - (g) What is Fermi gas and Bose gas ?
 - (h) Making use of the fact the entropy S(N, V, E) of a thermodynamic system is an extensive quantity, show

that
$$N\left(\frac{\partial S}{\partial N}\right)_{V,E} + V\left(\frac{\partial S}{\partial V}\right)_{N,E} + E\left(\frac{\partial S}{\partial E}\right)_{N,V} = S$$
.

2×8=16