(i)	Printed Pages: 3		Roll No.					
(ii)	Questions	:9	Sub.	Code:	3	7	2	4

Exam. Code: 0 4 7 5

M.Sc. Physics 4th Semester (2042)

NUCLEAR PHYSICS-II

Paper: PHY-8044

Time Allowed: Three Hours] [Maximum Marks: 80

Note: — Attempt five questions in all, selecting one question each from Units I to IV. Q. No. 9 from Unit—V is compulsory to attempt.

UNIT-I

- (a) Prove that the energy-shift due to spin-orbit potential in the shell model increases with the ℓ-values. Also discuss the success and failures of this model.
 - (b) Show that the Bessel's function can led to a few magic numbers, and write down the shell configuration for 30 Zn⁶⁷ and 43 Tc⁹⁹.
- (a) Determine Harmonic oscillator frequency 'w' appropriate
 to the nuclei ¹⁷O and ⁶⁰Ni. Also write short note on
 configuration mixing.
 - (b) Calculate the magnetic moments and quadrupole moments of ²⁵Mg, ³⁹K and ²⁰⁷Pb and write the shell configuration for ₂₀Ca⁴⁷, ₃₀Zn⁶⁷, ₁₆S³³ and predict the ground state spins and parities of these nuclei.

UNIT-II

- 3. (a) Prove that energies of nuclear-vibrational level with one phonon ($\lambda = 3$) is equal to the energy of 2-phonon with ($\lambda = 2$).
 - (b) Obtain the expression for Clebsch-Gordon (C.G.) series of D-Matrix.
- 4. (a) Derive an expression for the Rotational energy and wave function for the odd –A nucleus. Also discuss the case K = Ω ≠ 0 and K = Ω = 0. How Coriolis terms affects the Hamiltonian?
 - (b) Describe the various nuclear shapes in the (β, γ) plane.

8

UNIT-III

5. (a) What are the different types of nuclear reactions? Discuss with examples and what is the difference between compound nucleus and direct reaction? Give example.

8

- (b) Explain why one needs Statistical Theory for compound nucleus. Discuss Statistical Model for the theory of compound nucleus and derive the evaporation probability and cross-section for specific reactions.
- 6. (a) Explain Briet-Wigner Resonance dispersion formula.

8

(b) What is Optical Model? Derive the theoretical cross-section with optical model and compare it with experimental results.

UNIT-IV

7. (a) Describe cranking model and give its salient features.

8

- (b) Write a short note on super and hyper-deformation. 8
- (a) Starting from Hamiltonian for an harmonic anisotropic oscillator, develop the Nilsson model and give its salient features.
 - (b) Write a short note on Back-bending phenomenon. 8

UNIT-V

- 9. (a) Write a short note on nuclear isomerism.
 - (b) What are giant resonances?
 - (c) What is the difference between a rotational and a vibrational nucleus ?
 - (d) What are super-heavy elements?
 - (e) What is Nordheim's rule?
 - (f) How Nilsson model differs from Shell model?
 - (g) Write a short note on kinematic moment of inertia.
 - (h) What are stripping and pick-up reactions? 8×2=16