Exam.Code: 0005 Sub. Code: 0444

2021

B.A./B.Sc. (General), Fifth Semester Mathematics

Paper - II: Modern Algebra

Time allowed: 3 Hours

Max. Marks: 30

NOTE: Attempt five questions in all, selecting atleast two questions from each Unit.

X-X-X

UNIT-I

- I. a) If a and b be any two elements of group G such that ab == ba and (0(a), (0(b)) = 1, then show that O(ab) = O(a)O(b).
 - b) Find out order of elements of Q_8 , quarternions group. Is Q_8 abelian? Justify. (3,3)
- II. a) State and prove Lagrange's theorem. Is converse true?
 - b) Let H be a subgroup of G Show that $O(H) = O(x^{-1} Hx)$, $\forall x \in G$. (3, 3)
- III. a) Let K be a normal subgroup of a group G and L be any subgroup of G, then prove that

$$LK/_K \cong L/_{L \cap K}$$

- b) Find all subgroups of $\frac{Z}{21Z}$ (4,2)
- IV. a) Prove that the subset A_n consisting of all the even permutations in S_n is a normal subgroup of index 2.
 - b) Let $p = (1 \ 2 \ 3)$ and $q = (1 \ 3 \ 2)$ be two permutation on the set $\{1,2,3\}$. Calculate pqp^{-1} . (4, 2)

UNIT - II

- V. a) Prove that a commutative ring with unity is a field iff it does not have any proper ideal.
 - b) Show that < 4 >, ideal generated by 4 is maximal ideal in ring 2Z of even integers. (4,2)

- VI. a) Show that a ring R is commutative iff $(a + b)^2 = a^2 + b^2 + 2ab$ for all $a, b \in R$.
 - b) Find the field of quotients of the integral domain $Z[\sqrt{2}]$. (3, 3)
- VII. a) Prove that every field is integral domain. Is converse true? Justify.
 - b) Let $f: R \to R'$ be an onto homomorphism function. Then prove that

$$R/Kerf \cong R'$$
 (3.3)

- VIII. a) If R is an integral domain then prove that R[x], the ring of polynomials over R is also an integral domain.
 - b) Let R be an integral domain and f(x), $g(x) \in R[x]$. Prove that $\deg(f(x).g(x)) = \deg(f(x)) + \deg(g(x))$. (3,3)

X-X-X