Exam Code: 0002 Sub. Code: 0147

2071

B.A./B.Sc. (General) Second Semester Mathematics

Paper – III: Theory of Equations

Time allowed: 3 Hours

Max. Marks: 30

NOTE: Attempt five questions in all, selecting atleast two questions each Unit.

x-x-x

UNIT-I

- I. a) Find g.c.d. of $f(x) = x^3 + 2x^2 + 5$, $g(x) = x^4 3x^2 + 2x + 1$ and express the g.c.d. in the form a(x) f(x) + b(x) g(x)
 - b) Find the common roots of the equations $x^4 3x^3 7x^2 + 27x 18 = 0$, $x^4 5x^2 + 4 = 0$, hence solve them completely. (2x3)
- II. a) Solve the equation $x^4 6x^3 3x^2 24x 28 = 0$ given that one root is purely imaginary.
 - b) If reciprocal of every root of $x^3 + x^2 + ax + b = 0$ is also a root, then prove a = b = 1 or a = b = -1. (2x3)
- III. a) Reduce the equation $2x^3 3x^2 + 10x 4 = 0$ in the form in which 2^{nd} term is missing.
 - b) If α , β , γ are roots of the equation x^3 3x 2 = 0. Find an equation having roots $(\beta + \gamma)^2$, $(\gamma + \alpha)^2$, $(\alpha + \beta)^2$. (2x3)
- IV. a) Prove equation $x^5 + 2x^3 + 3x 1 = 0$ has no -ve root. Also find the m/of +ve and imaginary roots.
 - b) If α , β , γ are roots of $x^3 + 6x + 2 = 0$, then form a cubic equation having roots $(\alpha \beta)^2$, $(\beta \gamma)^2$, $(\gamma \alpha)^2$. (2x3)

P.T.O.

UNIT-II

- V. a) Show that the real roots of equation $x^4 2x^3 2x^2 + 10x 3 = 0$ lie between -2 and 4.
 - b) Use Newton's method of divisors to find the integral roots of equation $3x^4 23x^3 + 35x^2 + 31x 30 = 0. \tag{2x3}$
- VI. a) Solve the equation $x^3 6x^2 6x 7 = 0$ by Cardon's method.
 - b) Show that the equation $x^3 + x^2 2x 1 = 0$ has three real and distinct roots. (2x3)
- VII. a) Solve $x^4 6x^3 + 3x^2 + 22x 6 = 0$ by Descartes' method. b) Solve $x^4 + 12x - 5 = 0$ by Ferrari's method. (2x3)
- VIII. a) Use trigonometric method to solve the cubic $x^3 + 3Hx + G = 0$, $G^2 + 4H^3 < 0$, $G.H \in \mathbb{R}$.
 - b) Use Newton's method to approximate upto 3 places of decimal the cube root of 6. (2x3)