Exam.Code: 0002 Sub. Code: 0149

2071

B.A./B.Sc. (General) Second Semester Physics

Paper – B: Vibrations, Waves and EM Theory – II

Time allowed: 3 Hours

Max. Marks: 44

NOTE: Attempt <u>five</u> questions in all, including Question No.7 (Unit- III) which is compulsory and selecting two questions each from Unit I - II. Use of non-programmable calculator is allowed.

x-x-x

UNIT-I

- I. a) What do you mean by characteristic impedance of the string? Show that it is given by product of mass per unit length of string and wave velocity.
 - b) Prove that total energy and intensity of progressive wave is independent of x and t. (6,3)
- II. a) Prove that for transverse wave propagating from one medium to another, sum of reflection and transmission coefficient of energy is unity.
 - b) Two strings of linear densities 0.5 g/cm and 2.5 g/cm joined together and stretched by certain force. Calculate
 - i) Ratio of wave speed in the two strings
 - ii) Reflection and transmission coefficient of energy. (5,4)
- III. a) Define the term wave velocity and group velocity. Find the relation between wave velocity and group velocity. How this relation become for a medium having normal, anomalous and no dispersion.
 - b) Define Standing Wave Ratio (SWR). Derive expression for it in term of reflection coefficient.
 - c) Two sinusoidal waves

$$Y_1 = 0.03 \cos (7t - 10x) m$$

 $Y_2 = 0.03 \cos (5t - 7x) m$ (5,2,2)

are superimposed. Calculate group velocity.

UNIT - II

- IV. a) Write four Maxwell equations along with their significance. Using Maxwell equations, prove that electromagnetic waves are transverse in nature.
 - b) Using Maxwell equations, derive the wave equation of e.m. waves in the medium having finite permeability and permittivity but no conductivity ($\sigma = 0$). (5,4)
- V. a) Derive the expression for impedance of conducting medium to the e.m. waves.
 - b) If a 1000 W laser beam is concentrated by lens into crosssection area of 10^{-10} m², find the Poynting vector and amplitude of electric field vector. Given $\varepsilon_0 = 9 \times 10^{-12}$ SI units.
 - c) Define skin depth. Prove that skin depth for perfect conductor is zero. (3x3)
- VI. a) Discuss reflection and transmission of plane e. m. wave incident normally at the boundary separating two media of different impedances.
 - b) Calculate the coefficient of reflection and transmission of energy of normally incident e.m. waves on surface of water. Given relative electric permittivity ($\varepsilon_r = 81$).
 - c) Does refractive index of a medium depend on frequency of wave? Explain. (5,3,1)

UNIT - III

- VII. Attempt any eight of the following:
 - a) A wave of frequency 400 Hz is travelling with velocity of 800 ms⁻¹. How far two point situated whose displacements differ in phase by $\pi/4$?
 - b) Differentiate between progressive wave and stationary wave.
 - c) Differentiate normal and anomalous dispersion with examples.
 - d) Sound travel faster in rainy day. Explain.

- e) Write down units and dimension of $\sqrt{\mu\varepsilon}$
- f) What is the value of impedance of dielectric to e. m. waves in vacuum?
- g) What is the phase difference between electric field (E₀) and magnetic field (B₀) of e. m. wave in conducting medium?
- h) Differential between conduction current and displacement current.
- i) A plain radio wave has $E_o = 10^{-4} \text{ Vm}^{-1}$. Calculate B_o .
- j) As the conductivity increases, a conductor behaves like a short circuit to incident
 e.m. waves. Justify (8x1)