Exam.Code:0002 Sub. Code: 0150

2071

B.A./B.Sc. (General) Second Semester Physics

Paper – C: Electricity and Magnetism – II

Time allowed: 3 Hours

Max. Marks: 44

NOTE: Attempt <u>five</u> questions in all, including Question No. VII (Unit- III) which is compulsory and selecting two questions each from Unit I - II. Use of non-programmable scientific calculator is allowed.

x-x-x

UNIT - I

- I. a) Derive an expression for the electric field of a point charge moving with velocity \vec{v} .
 - b) Electric field in a stationary frame of reference is $\vec{E} = (3\hat{i} + 4\hat{j})Vm^{-1}$. Calculate the electric field in frame of reference moving with velocity $\vec{v} = (2\hat{i} + 1.5\hat{j}) \times 10^8 \, ms^{-1}$ w.r.t laboratory frame. (4,5)
- II. a) Discuss Langevin's theory of diamagnetism.
 - b) The volume of the core of a transformer is 1000 cm^3 . It is fed with an arc of 50 Hz. If the loss of energy due to hysteresis per hour be 36 J, calculate the area of the $\vec{B} \vec{H}$ loop. (4,5)
- III. a) Derive and discuss the equation of continuity $\vec{\nabla} \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$
 - b) Derive Ohm's law from its macroscopic form $\vec{J} = \sigma \vec{E}$. (4,5)

UNIT - II

- IV. a) Using Biot-Savart's law find magnetic field due to straight current carrying conductor. Also find magnetic field due to infinite straight conductor.
 - b) A wire of square shape of each side 10 cm long is carrying a current of 2A in anti-clockwise direction. Calculate magnetic field at its centre. (6,3)

- V. a) State and prove reciprocity theorem of mutual induction.
 - b) A coil of 100 turns and area of cross-section 20 cm² is placed in magnetic field of 0.01 Wb m⁻² in such a manner that magnetic flux passes through all the turns. Calculate induced e.m.f. if magnetic field is reversed 100 times in one second.

(6,3)

- VI. a) What is vector potential? Derive expression for it. Show that divergence of vector potential is zero.
 - b) Show that energy density in magnetic field B set up in a solenoid is $\frac{B^2}{2\mu_0}$. (6,3)

UNIT - III

- VII. Attempt any eight of the following:
 - a) Write down vector form of Ohm's law.
 - b) What is difference between conservation and invariance of charge?
 - c) What is Bohr's magneton?
 - d) Write down equation which shows that magnetic monopoles do not exist?
 - e) A positive charge moving downward enters in earth's magnetic field. In which direction the particle is deflected?
 - f) What is Hall effect?
 - g) A closed loop is rotated in its own plane in magnetic field B with angular speed ω . What is the e.m.f. induced in the loop?
 - h) State the conditions under which the potential in a conductor satisfies Laplace's equation.
 - i) Drift velocity of electrons is only few millimetres per second. Then why bulb glows immediately when switched on?
 - j) What type of magnetic field is used in induction motor? (8x1)