Exam Code: 0006 Sub. Code: 0542

2071

B.A./B.Sc. (General) Sixth Semester Mathematics Paper – II: Linear Algebra

Time allowed: 3 Hours Max. Marks: 30

NOTE: Attempt <u>five</u> questions in all, selecting atleast two questions each Unit. All questions carry equal marks.

x-x-x

UNIT - I

Q.No:1 (a) Does the set of all lower triangular matrices of order n over \mathbb{R} form a vector space over \mathbb{R} or not with respect to usual addition and scalar multiplication of matrices? Justify.

(b) Give an example to show that the union of two subspaces of a vector space V over a field F is not always a subspace of V. Also state a condition under which the union of two subspaces can be a subspace and prove it.

Q.No:2 (a) Let V be the vector space of polynomials of degree ≤ 3 over \mathbb{R} . Discuss if the vectors $v_1 = t^3 - 3t^2 + 5t + 1$, $v_2 = t^3 - t^2 + t + 1$, $v_3 = 5t^3 + 8t^2 + t + 3$ are linear independent or linearly dependent?

(b) Let V be a vector space over the field F. Prove that the set S of non-zero vectors $v_1, v_2, ..., v_n \in V$ is linearly dependent iff some vector, say v_k , can be expressed as the linear combination of the other vectors of the set S.

Q.No:3 (a) Let W(F) be a subspace of a finite dimensional vector space V(F). Prove that dim $W \le \dim V$. Also prove that V = W if and only if dim $V = \dim W$.

(b) Find a basis and dimension of the solution space S of the following linear equations

$$x + 2y - 2z + t = 0,$$

$$2x + 4y - 2z + 4t = 0,$$

$$2x + 4y - 6z = 0,$$

$$3x + 6y - 8z + t = 0.$$

Q.No:4 (a) Find a linear map $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that T(1,2) = (3,-1,5) and T(1,0) = (2,1,1). Also determine null space, range space, nullity and rank of T.

(b) State and prove Rank Nullity Theorem.

UNIT - II

Q.No:5 (a) Let $B = \{v_1, v_2, ..., v_n\}$ be basis of a vector space V(F) and T be a linear transformation on V. Then prove that for any vector $v \in V$, [T; B][v; B] = [T(v); B].

(b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined by T(x, y, z) = (3x - z, 2x + y, -x + 2y + 4z). Prove that T is invertible and find explicit formula for T^{-1} .

Q.No:6 (a) Let a linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x, y) = (3x + y, 3x + 5y). Find all the eigen values and basis for each eigen space.

- (b) Let T be a linear operator on a finite dimensional vector space V(F). Prove that the following statements are equivalent:
- (i) λ is an eigen value of T
- (ii) The operator $T \lambda I$ is singular
- (iii) $Det(T \lambda I) = 0$.

Q.No:7 (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x,y,z) = (x-3y+3z,3x-5y+3z,6x-6y+4z). Is T diagonalizable? Justify. If T is diagonalizable find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix where A is the matrix of T with respect to usual basis B of \mathbb{R}^3 .

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x,y) = (x+y,x-y). Find the characteristic polynomial of T and verify Cayley-Hamilton Theorem.

Q.No:8 (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (2x - y, x + y + z, 2z). Find the characteristic and minimal polynomial of T.

(b) Prove that the characteristic and minimal polynomial of a linear operator have same irreducible factors.