Exam.Code:0005

Sub. Code: 0444

2012

B.A./B.Sc. (General), Fifth Semester Mathematics

Paper – II: Modern Algebra

Time allowed: 3 Hours Max. Marks: 30

NOTE: Attempt five questions in all, selecting atleast two questions from each Unit.

UNIT-1

- 1. (a) Give an example of an abelian group of order 8, clearly proving all the axioms.
 - (b) Let G be a semi-group and $a, b \in G$. Prove that G is a group if and only if both the equations ax = b and ya = b have unique solutions in G. (2, 4)
- (a) Let G be a finite group and a ∈ G. Prove that a^t = e if and only if O(a) divides t.
 (b) If H and K are two subgroups of a group G, then prove that HK is a subgroup iff HK = KH.
 (3, 3)
- 3. (a) State and prove Lagrange's theorem. Is converse true? Justify.
 - (b) Prove that a subgroup of a cyclic group is again cyclic.

---, 1

(3, 3)

- 4. (a) Prove that a subgroup H of a group G is a normal subgroup of G iff the product of two right cosets of H in G is again a right coset of H in G.
 - (b) If H is a normal subgroup of A_n and contains a cycle of length 3, then prove that $H = A_n \ (n \ge 5)$. (3, 3)

UNIT-II

- 5. (a) Prove that the set $R = \{a + \sqrt{2} \ b : \ a, b \in Q\}$ where Q is the set of rational, is a ring.
 - (b) Let I and J be any two ideals of a ring R. Prove that $I \cup J$ is an ideal of R iff either $I \subseteq J$ or $J \subseteq I$. (3, 3)
- 6. (a) Prove that an ideal S of the ring Z of all integers is a maximal ideal if and only if S is generated by some prime integer.
 - (b) Write down all the distinct elements of the ring Z/4Z. Write the multiplication table for this ring. (3, 3)

P.T.O.

- 7. (a) Let I and J be any two ideals of a ring R. Then prove that $I/(I \cap J) \cong (I+J)/J$. (b) Find all homomorphisms from the ring Z onto Z. (3, 3)
 - 8. (a) Let R be a commutative ring with identity, $f(x) \in R[x]$ and $a \in R$. Then show that (x a) divides f(x) if and only if a is a root of f(x).
 - (b) Let R be a commutative ring with unity and < x > is a prime ideal of R[x]. Show that R is an integral domain. (3, 3)