Exam.Code:0003 Sub. Code: 0247

2121

B.A./B.Sc. (General) Third Semester Physics

Paper – A: Statistical Physics and Thermodynamics – I

Time allowed: 3 Hours

Max. Marks: 44

NOTE:

Attempt <u>five</u> questions in all, including Question No. VII (Unit-III) which is compulsory and selecting two questions each from Unit I - II. Use of non-programmable Calculator is allowed.

x-x-x

UNIT - I

- a) Derive an expression for probability of a macrostate (N₁,N₂.....N_k)
 corresponding to distribution of N distinguishable particles in K compartments of
 unequal sizes.
 - b) A bag contains 4 white and 5 black balls. Two balls are drawn in succession from the bag. Calculate the probability that the two balls drawn are both white. (7.2)
- II. a) What do you mean by most probable macrostate? Derive an expression for the probability of this state corresponding to distribution of N particles in two identical compartments.
 - b) $5x10^{10}$ gas molecules are enclosed in a cubical volume. Imagine the volume to be divided into two equal halves. Calculate the probability for a state in which the number of molecules in a given state are only 0.001% different from that of equilibrium state. (6,3)
- III. a) Prove that the fraction of time spent by a system in a macrostate is equal to probability of system to exist in that macrostate.
 - b) 8 distinguishable particles are distributed in 2 compartments of unequal sizes. The first compartment is further divided into 2 cells of equal sizes. Calculate probability of
 - i) Macrostate
 - ii) Most probable macrostate

(6,3)

UNIT - II

- IV. a) Explain in detail about experimental verification of Maxwell-Boltzmann Distribution of molecular speeds.
 - b) Derive an expression for phase space volume of energy compartment. (6,3)
- V. a) Derive Fermi-Dirac distribution law
 - b) 12 fermions are distributed in three compartment having energies -E,0,E. Find energy of Macrostate
 - (i) (6,4,2)
 - (ii) (5,2.5)

(7,2)

- VI. a) Derive an expression for Planck's law for energy distribution of Black body radiation.
 - b) Obtain the short and long wavelengths limits of Planck's law for black-body radiation. (6,3)

UNIT - III

- VII. Attempt any eight of the following:-
 - (a) How does classical statistics differ from quantum statistics?
 - (b) Do electrons have zero energy at 0 K? If not, explain why?
 - (c) Does Fermi energy depend upon size or volume of conductor?
 - (d) What is occupation index? What is its functional form at T = 0K for a system of fermions?
 - (e) Why there is need to divide compartments into cells if we take the concept of phase space?
 - (f) What is difference between Macrostate and Microstate?
 - (g) What is difference between static and dynamic system?
 - (h) Distinguish between position, momentum and phase space.
 - (i) What is the importance of most probable macrostate?
 - (j) What is the maximum probability for an event to occur? (8x1)