Exam. Code: 0003 Sub. Code: 0251

2012

B.A./B.Sc. (General) Third Semester Chemistry

Paper - X: Organic Chemistry - A

(Same for B. Sc. Microbial and Food Technology)

Time allowed: 3 Hours Max. Marks: 22

NOTE: Attempt <u>five</u> questions in all, including Question No. IX (Unit-V) which is compulsory and selecting one question each from Unit-I-IV.

X-X-X

UNIT-I

- I. a) What are 1°, 2° and 3° alcohols? Starting with Grignards reagent, how would you obtain each of them?
 - b) How will you convert?
 - i) Phenol to Salicylaldehyde
 - ii) Phenol to phenolphthalein.

(2x2)

- II. a) What is Reimer Tiemann reaction? Give its mechanism.
 - b) Complete:
 - i) Glycerol + KHSO₄ $\stackrel{\Delta}{\longrightarrow}$
 - ii) Glycerol + HIO₄ →

(2x2)

UNIT -II

- III. a) Complete the Carbonyl group and ethylenic double bond.
 - b) How will you prepare acetaldehyde by ozonolysis.

(2x2)

- IV. a) What is oppenauer alcohol oxidation? Explain with example.
 - b) How will you prepare:
 - i) Acetophenone
 - ii) Benzophenone by Friedel crafts reaction

(2x2)

P.T.O.

Sub. Code: 0251

(2)

UNIT - III

- V. a) Discuss acidity of α-hydrogens.
 - b) Give reaction of acetone with
 - i) Semicarbazide

ii) Phenylhydrazine (2x2)

- VI. a) Give following reactions with mechanism
 - i) Reformatsky reaction
 - ii) Aldol condensation
 - b) Prepare:
 - i) Cinnemaldehyde by claisen reaction
 - ii) Benzoin by Benzoin condensation (2x2)

UNIT - IV

- VII. a) Out of formic acid and acetic acid which is more acidic and why?
 - b) Write products of following reactions:

i) CH₃-CH = CHCHO
$$\xrightarrow{(O)}$$

ii)
$$CH_2 = CHCOOH \xrightarrow{H_2[Nt]}$$
 (2x2)

VIII. a) Draw structure of citric acid.

b) What is esterification? Give its mechanism. (2x2)

UNIT - V

- IX. Answer the following:
 - a) Lemon alcohols are soluble in water but higher members are not. Explain.
 - b) How is phenol prepared by Dow's Process?
 - c) What is urotropire? Give its structure.
 - d) Give Haloform reaction for preparation of Carboxylic acids. (4x1½)

X-X-X