Exam.Code:0039 Sub. Code: 0992

B.Sc. (Hons.) Bio-Informatics First Semester BIN-1005: Mathematics

Time allowed: 3 Hours Max. Marks: 60

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit. All questions carry equal marks.

X-X-X

- 1 (a) Give an example of a function which is one-one but not onto and a function which is onto but not one-one.
- (b) Given 4 flags of different colours, how many different signals can be generated, if a signal requires the use of 2 flags one below the other?
- (c) How many eight digit numbers can be formed if all the digits are different?
- (d) How many terms will be there in the expansion of $[(x+a)^2 (x-a)^2]^7$?
- (e) Why $\lim_{x \to k} [x]$, where k is an integer and [x] = greatest integer $\le x$, does not exist?
- (f) Show that $\int \sec x \, dx = \log |\sec x + \tan x| + C$

UNIT-1

- 2 (a) There are 200 individuals with a skin disorder, 120 had been exposed to the chemical C_1 , 50 to chemical C_2 , and 30 to both the chemicals C_1 and C_2 . Find the number of individuals exposed to (i) Chemical C_1 but not Chemical C_2 and (ii) Chemical C_1 or Chemical C_2 .
- (b) If P(X) denotes the power set of the set X then show that $P(A \cap B) = P(A) \cap P(B)$ for any two sets A and B. Also show by a suitable example that $P(A \cup B) \neq P(A) \cup P(B)$.
- (c) For three sets A, B and C prove that $A (B \cup C) = (A B) \cap (A C)$.
- 3 (a) A relation R is defined on the set of integers, \mathbb{Z} , as $(x, y) \in \mathbb{R} \Leftrightarrow x^2 + y^2 = 25$. Write down all elements of R and \mathbb{R}^{-1} .
- (b) Let $f(x) = \frac{1}{1-x^2}$ and $g(x) = \frac{x^2}{1+x^2}$, find domain and range of F(x) = f(x) + g(x).
- (c) In how many ways can one select a cricket team of 11 from 17 players, in which only 5 persons can bowl, if each cricket team must include exactly 4 bowlers?
- 4 (a) How many words, with or without meaning, each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
- (b) Find the coefficients of x^{32} and x^{-17} in the expansion of $(x^4 \frac{1}{x^3})^{15}$.

(c) Show that the middle term in the expansion of $(1+x)^{2n}$ is $2nx^n \frac{1.3.5...(2n-1)}{n!}$, where n is a positive integer.

UNIT-II

- 5. (a) Show that $\lim_{x \to 0} \frac{\sqrt{1+x+x^2}-1}{x} = \frac{1}{2}$.
- (b) For what value of λ is the function defined by $f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ \lambda & \text{if } x = 0 \end{cases}$ continuous?
- (c) Differentiate $(\sin x)^{\cos x} + (\cos x)^{\sin x}$ with respect to x.
- 6. (a) A cone is 10 cm in diameter and 10 cm deep. Water is poured into it at the rate of 4 cc/min. At what rate is the water level rising at the instant when the depth is 6 cms?
- (b) Find the rate of change of the area per second of a variable circle with respect to its radius r when r = 5 cm.
- (c) The radius of an air bubble is increasing at the rate of $\frac{1}{2}$ cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?
- 7 (a) Evaluate $\int \frac{\tan^4 \sqrt{x} \cdot \sec^2 \sqrt{x}}{\sqrt{x}} dx$
- (b) Evaluate $\int \frac{1}{\sin^2 x \cdot \cos^2 x} dx$
- (c) Compute the area enclosed between the curves $x^2 = 4ay$ and $y^2 = 4ax$.