

No. of Questions set

SHEETS NO. 1 PRESS COPY KINDLY WRITE LEGIBLY

Panjab University, Chandigarh

Examination: BCA (5th Semester)

January 2022

Course Name: Discrete Mathematical Structure

Course Code: BCA-16-502

Time Allowed: 3 Hours

Maximum Marks: 65

Note: Attempt FIVE questions an all, including Q-9 in section-E, which is compulsory and taking ONE Question each from Sections A-D. Each Question carries 18 marks.

SECTION-A

1)

- a) Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.
- b) Show that the function $f: \Re \to \Re$ defined by $f(x) = \cos(x), \forall x \in \Re$, is neither one-one nor onto. (7, 6)

2)

- a) Let $A \times B = \{(1, 1), (2, 2), (3, 1), (3, 2), (1, 2), (1, 4), (2, 1), (2, 4), (3, 4)\}$. Find the power set of B, P(B).
- b) Find $g \circ f$ and $g \circ g$ for the functions f and g as defined below:

$$f,g:\mathbb{R}\to\mathbb{R}$$
 defined, respectively, by $f(x)=x^2+3x+1,\ g(x)=2x-3, \forall x\in\mathbb{R}$. (7, 6)

SECTION-B

3) Solve the following recurrence relation:

$$S(n) - 4S(n-1) - 11S(n-2) + 30S(n-3) = 0$$
 with $S(0) = 0, S(1) = -35$ and $S(2) = -85$. (13)

4) Solve the following recurrence relation by using the method of generating functions:

$$h_n = h_{n-1} + h_{n-2} \ (n \ge 2); \ h_0 = 1, \ h_1 = 3.$$
 (13)

SECTION-C

5)

- a) If a graph has exactly two vertices of odd degree, prove that there must be a path joining these two vertices.
- b) Prove that in a graph G, the number of vertices of odd degree is even.

(7, 6)

6)

- a) Explain the travelling-salesman problem and its solution.
- b) What is the shortest path between v1 and v7 in the following weighted graph?

(6, 7)

SECTION-D

- 7) What is a state in a finite state machine (FSM)? Consider the set of strings over {0, 1, 2} such that the sum of the digits is a multiple of 3. Draw a deterministic finite-state machine that accepts this language. Use as few states as possible. (13)
- 8) Define computer algorithm and its features. Explain O, Θ and Ω notations used in analyzing algorithms with diagrams. (13)

SECTION-E (Compulsory Question)

9)

- a) What are the applications of Venn diagrams?
- b) How many edges are there in a graph with 10 vertices each of degree 5?
- c) What do you mean by recursive algorithm?
- d) Explain what is meant by 'complexity of problems' in relation to computer science.
- e) Define Degree of a Graph.
- f) Draw the graph of the function f(x) = |x| + 5 for $x \in [-5, 5]$.

(5x2,3=13)